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Attenuation Measurement of Very Low Loss
Dielectric Waveguides by the Cavity

Resonator Method Applicable in
the Millimeter/Submillimeter

Wavelength Range

FRED I. SHIMABUKURO, MEMBER, IEEE, AND C. YEH, FELLOW, IEEE

Abstract —A dielectric waveguide shorted at both ends is constructed as

a cavity resonator. By measuring the Q of this cavity, one can determine

the attenuation constant of the goided mode on this dielectric structure.

The complex permittivity of the dielectric waveguide material can also be

derived from the measurements. Measurements were made at Ka -band for

dielectric waveguides constricted of nonpolar, low-loss polymers such as

Teflon, polypropylene, polyethylene, polystyrene, and rexolite.

I. INTRODUCTION

B Y USING A specially configured dielectric rod made

from low-loss, nonpolar polymers, one can construct

millimeter/submillimeter dielectric waveguides supporting

the dominant mode with a very small attenuation coeffi-

cient. To verify experimentally the low-loss characteristics

of such waveguides, an accurate measurement scheme must

be devised. A logical solution is the construction of a

cavity consisting of a length of a dielectric rod waveguide

supporting the mode of interest, with parallel shorting

plates at both ends [1]. At a resonant frequency of such a

cavity, the guide wavelength, A ~, is obtained from the

cavity spacing, and the attenuation constant, a, can be

obtained from the measured Q. This cavity method also

provides an accurate determination of the dielectric prop-

erties of the waveguide material.

This paper will first describe the theoretical foundation
for this cavity technique. Then, a detailed discussion and

derivation of the relationship between a and Q are given.

Finally, experimental results for several low-loss dielectric

materials are presented.

II. THEORETICAL FOUNDATION

The geometry of a dielectric rod resonator, including a

schematic of the measurement system, is shown in Fig. 1.

The signals are coupled in and out of the resonator through
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Fig. 1. The schematic ot the dielectric waveguide cavity resonator,
including measurement setup,

small coupling holes in the center of the reflecting plates.

For a circular step-index dielectric rod, the HE1l mode is

the dominant guided mode for this dielectric waveguide

[2], [3]. The longitudinal fields of this HEII mode resonat-

ing between two shorting, parallel plates are, inside the

core region (p < a J

E=, = A.ll(up) sin+ cos~z (1)

Hz, = l?J1(zzp) cos + sin~z (2)

u==k:–~= k:= U=ptl (3)

and

p=y, m=l,2,3 . . . .

Outside the core region (p > a), they are

E,O = CK1( wp) sin+ cos/3z (4)

H,O = DK1(wp) cos @sin /3z (5)

with

w’=~=-k$ k;= u2pc2. (6)

In the previous equations, A, B, C, and D are arbitrary

constants, Jl( up) is the Bessel function, Kl( wp) is the

modified Bessel function, a is the radius of the dielectric

rod, d is the spacing between the shorting plates, c~ and c=

are the permittivities of the regions inside and outside the
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Fig. 2. Dispersion of the HEII mode of a rod dielectric waveguide of
radius a. The solution is given as a plot of the normalized guide
wavelength as a function of normalized rod diameter. A ~ is the

free-space wavelength.

core, respectively, u is the angular frequency of the reso-

nant mode, and p = p ~ is the permeability of free space.

In this study, the region outside the core is free space,

and Cz = CO. It is noted that all transverse fields

(E+, E,, H@, H,), may be derived from the longitudinal
fields, Ez and Hz [4]. By satisfying the boundary condi-

tions at p = a, the following dispersion relation is ob-

tained:

[

J~(ua) K{(wa)

1[

~fJI( ~a) + h$K{(wa)
+

z.dl(ua) WK1 ( wa ) u.ll(ua) WK1( wa ) 1

‘(52[+++12 ‘7)

The solution of this dispersion relation will yield the guide

wavelength, A ~, of the cavity for the HEII mode for given

a, d, c1\c ~, p ~, and a. Results for various values of c,

( = cl/cO) are shown in Fig. 2.

III. ULTRAHIGH Q DIELECTRIC ROD

RESONANT CAVITY

As shown in Fig. 1, a dielectric rod resonant cavity

consists of a dielectric waveguide of length d terminated at

its ends by sufficiently large, flat, and highly reflecting

plates that are perpendicular to the axis of the guide.

Microwave energy is coupled into and out of the resonator

through small coupling holes at both ends of the cavity.

For best results, the holes are dimensioned such that they

are beyond cutoff. At resonance, the length of the cavity,

d, must be mAg/2 (m an integer), where Ag is the guide

wavelength of the particular mode under consideration. By

measuring the resonant frequency of the cavity, one may

obtain the guide wavelength of that particular guided

mode in the dielectric waveguide. The propagation con-

stant, ~, of that mode is related to A ~ and up, the phase

velocity, as follows:

(8)

where u is the angular frequency of oscillation, ~ is the

total time-averaged energy stolred, and ~ is the average

power 10ss.

For the case under study, with carefully machined di-

electric rods and proper cavity alignment, the time-aver-

aged power dissipation ~ consists of two parts, the power

loss due to the dielectric rod and that due to the metal end

walls, namely,

F = Fdielectic + Fwd, .

The power dissipation due to the dielectric rod is given by

where El is the electric field within the dielectric rod, Ud is

the conductivity of the dielectric, Ad is the cross-sectional

area of the dielectric rod, and the asterisk denotes the

complex conjugate. The losses due to both end walls are

given by

Fwa,, = ()2 : ~ ‘(H,”H,*)dA
w

(11)

where R, = ~Z, the wall surface resistivity, or is the

conductivity of the reflector material, and Ht is the

tangential component of the magnetic field along the metal

wall. Here, A ~ is the area of eiich conducting wall. There

is also a loss due to the coupling hole, but, as in this

experiment, the coupling can be made sufficiently small,

such that the primary wall losses can be considered to be

the ohmic wall losses:

~= 2~m = 2i7e = W{V(ZM*:) dV= cj@E*) dV (12)

where V is the total volume of the cavity, ~~ and W. are

the time-averaged magnetic and electric energies, respec-

tively, and H and E are the total fields. Equation (9)-(12)

can be rearranged to obtain

1 F Fdielectnc Fwdl 1 1

~=m=7 ‘@w=z+E”
(13)

The term Qd is the Q factor of the cavity if the end plates

were perfectly conducting, and Q. is the Q factor of the

cavity if the dielectric were perfect. From (13) we have
—

1 c’=
Qd.; . .

cl c
dielectric 2tan6— D

(14)

The Q of a resonator is indicative of the energy storage —

capability of a structure relative to the associated energy

dissipation arising from various loss mechanisms, such as
QW=~.:> (15)

wall r w
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where tan 8 ( = u/ticJ is the loss tangent of the dielectric

rod, and 8, ( = 2 R ~lop) is the skin depth of the metallic

end plates. The ratios C~/C~ and C~/C w are dimension-

less quantities involving integrals of the fields.

It is noted that Q~ is independent of the length of the

cavity whereas Q ~ is proportional to the length. For a long

cavity, Q. >> Qd, and Q = Qd. By measuring the Q of the

cavity with Q. >> Q& one can obtain the attenuation

constant a of the given mode.

In 1944 Davidson and Simmonds [5] derived a relation

between the Q of a cavity composed of a uniform trans-

mission line with short-circuiting ends, and the attenuation

constant a of such a transmission line. Later, in 1950,

Barlow and Cullen [6] rederived this relation. These authors

showed that this relation is quite general and is applicable

to uniform metal tube waveguides with arbitrary cross

section. Since then, one of the standard techniques for the

measurement of the attenuation constant a is the use of

the cavity method.1 This method offers an excellent way of

measuring the attenuation constant of the guide when the

loss is quite small. Later on this method was generalized

and applied to open waveguides, such as the single wire

line, the dielectric cylinder guide, and associated guides, by

various authors, e.g., [1], [7].

However, it should be remembered that the formula by

Davidson and Simmonds and Barlow and Cullen is de-

rived under the assumption that there exists a single equiv-

alent transmission line for the mode under consideration.

This assumption is true for a pure TE, TM or TEM mode,

but it is not clear that such a single equivalent transmis-

sion line exists for the hybrid ‘waves. This suspicion arises

from the fact that a) the TE and TM waves are intimately

coupled to each other, and b) the characteristic impedance

defined by Schelkunoff [8] is not constant with respect to

the transverse coordinates. It is, therefore, very difficult to

conceive the possibility y that there exists a single equivalent

transmission line for this hybrid mode; at best the hybrid

wave may be represented by a set of transmission lines

coupled tightly with one another. Hence, the formula by

Davidson and Simmonds and Barlow and Cullen is not

applicable to the hybrid wave. 2

A more general relation between Q and a can be

obtained without using the transmission line equivalent

circuit, provided that a is very small compared with ~.

The propagation constant of a guided wave with small

attenuation constant at cd is

r(u) =a(ti)+Jp(@), j.~ (16)

It can be shown that for a waveguide placed between

reflecting parallel plates, with minuscule coupling to exter-

1The procedures of this method in generaf are the following: Short-cir-

cuit the uniform transmission line under consideration at both ends and
measure the Q of such a resonator. From the knowledge of the measured

Q and other constants, such as the cutoff frequency of the guide and the
frequency of osculation, it is an easy matter to obtain from the formula
derived by these authors.

2But several investigators, apparently unaware of this restriction, used

this formula in their investigations of the hybrid wave,

nal circuits,

1

‘z- 11- r2exp(-2rd) 12
(17)

where Pt is the power transmission of the resonator, r is

the reflection coefficient at each wall, r is the propagation

constant, given in (16), and d is the distance between the

reflecting plates. At the half-power transmission points,

P,((.J= UO)=2P1(U=WO+AW) (18)

and

~=/$+A/3

CI=(IO+ACY. (19)

For the case r =1 and ad <<1, and using (17)–(19), one

gets

A~=a,

Since

and

Q=s
2 A(.J

we finally arrive at the relation

(21)

This is the general relation that we are seeking. This result

was also obtained by Yeh [9] using an alternative ap-

proach. Substituting the values of UP/Ug for TE, TM or

TEM into (21), one gets the relations derived by Davidson

et al. For the TM or TE mode,

‘P =
1 1 B

(1

~2
~=

‘-’g

()

A Gij

1– ~ 1– ~
c c

and for the TEM mode,

vp/ug = 1 a=~/2Q

where A. is the cutoff wavelength.

The group and phase velocity of the dominant modes

can be obtained easily from the w –~ diagram. A sketch of

the u –~ diagram for the propagating modes is shown in

Fig. 3. It can be seen that at low frequencies or small ~ ‘s,

up = Ug and again at very high frequencies or large ~ ‘s,

up = ug. Therefore, the relation a = /3/2Q is applicable

only at very low frequencies or at very high frequencies.

Returning now to the problem of measuring the attenua-

tion constant of very low loss dielectric waveguides, one

notes that using the dielectric waveguide cavity technique,

a Q of the order of 30000 can readily be measured. At the

higher frequencies this value of Q corresponds to a loss

tangent of the order of 10-5. A schematic of the experi-

ment is shown in Fig. 1. A dielectric rod waveguide is
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Fig. 4. Power output of a swept input signaf through a dielectric
waveguide in a parallel-plate resonator.

placed in a parallel-plate cavity, and a swept signal

frequency is transmitted through the waveguide cavity and

detected by a spectrum analyzer. The signals are coupled

through very small holes in the circular gold plated re-

flectors. The plates are large enough (6 in. diameter)

such that the fields beyond the plate diameter are insig-

nificant. The output is a series of narrow transmission

resonances at fl, f2, ” “ ., fm with half-power bandwidths,

Afl, Af2,. . “, A fm, respectively (see Fig. 4). At each reso-

nant frequency the guide wavelength is given by

and the Q by

(22)

(23)

where d is the length of the waveguide and m is the m th

resonance. The integer m is the number of guide half-

wavelengths at a particular resonant frequency. From a,

the dielectric rod radius, the spacing d, the guide wave-
length X ~, and the number m, the relative dielectric con-

stant, c,= ~l/c ~, can be determined at the different fre-

quencies using the solutions of (7).

With careful alignment of the waveguide and the short-

ing plates the primary loss mechanisms to be considered

are the wall losses and the dielectric loss. From previous

1,0

If:ll
Er=350

/
08 2,55

@6 2.04

04

0.2

0
0 02 04 06 08 1.0 1.2 14 16

2a/10

Fig. 5. Plots of the attenuation factcm ~ in a circular dielectric wave-

guide of radius a for different relative persnittivities.

discussion,

111
—+—

Q.= Q, Q.
(24)

where Q~ is the measured Q of the m th mode, recalling

that Qd is independent of cavity length, whereas QW is

proportional to the cavity length. For the different dielec-

tric waveguides used in this study, the calculated Q ~

ranges from 18000 to 21000 d, where d is the length in

cm. Experimentally, the effect of the wall losses, whether

due to the coupling or to the ohmic dissipation, on the

cavity Q could not be detected; therefore,

Q.>> fib (25)

The measurement verification of (25) will be discussed in

the next section.

The general relation between Q and a for a short-cir-

cuited low-loss waveguide given in (21) is rewritten as

UP
~=8,68fj—L’-- dB/m

ug 2Q
(26)

where UP= u//3 and Ug= da\d6. It has been shown that,
for a dielectric rod waveguide I1O],

a = 4.343u@~ tan&rR (27)

where

/( EIE:) dA
Ad

R=

~~

l-l
(28)

— ez. (Ex H*)dA
6~ A

As before ~,= CJCO, Ad is the cross-sectional area of the
core region of the dielectric waveguide, A is the total

cross-sectional area, El is the electric field Witfin the

dielectric rod, e= is the unit vector along the direction of

propagation, and E and H are the total fields. The

quantity R is a frequency-dependent geometrical factor

which can be computed. The loss tangent can be obtained
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Fig. 6. Photograph of the output on the spectrum anafyzer through the
dielectric waveguide m the parallel-plate cavity at a transmission
resonance.

by combining (26) and (27):

Vp B___

tan 8 =
FQ “

(29)
~ P~oc3

For a circular dielectric waveguide, one can calculate R for

different values of c,. This is shown in Fig. 5. Hence, by

measuring the Q of a dielectric rod in a parallel-plate

resonator, the loss tangent of the dielectric and the at-

tenuation constant for the corresponding mode can be

obtained. This scheme provides an extremely accurate way

of measuring the electrical properties (e., tan 8 ) of ultra-

10W-IOSSdielectrics as well as the low attenuation constant

for a dielectric waveguide supporing the dominant mode,

111. EXPERIMENTAL RESULTS

Circular dielectric rod waveguides were made of Teflcm,

rexolite, polystyrene, polyethylene, and polypropylene. The

diameters ranged from 0.4 to 0.63 cm, and the lengths

from 15.2 to 20.3 cm. These waveguides were placed in a

parallel-plate resonator. A swept frequency signal at Ka-

band (26.5–40 GHz) was coupled into the resonator almd

the output was detected by a spectrum analyzer. The input

and output coupling was done through a small hole (1.5

mm diam.) in an iris in WR-28 waveguide. With this

coupling. only the HEII dominant mode was excited. This

was verified by mapping the fields outside the dielectric

waveguide with an electric probe. A sample measurement

of the transmission resonance on the spectrum analyzer is

shown in Fig. 6, for a Teflon rod waveguide.

At each resonance the Q is measured. The results a,re

shown in Fig. 7. Because m is known to be an integer it

can be readily determined by measuring the guide wave-

length approximately with a probe. Once m is known, the

guide wavelengths at the various resonant frequencies are

accurately determined, and the Q –~ diagram can be gen-
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Fig. 7. Measured Q‘s of the different circular dielectric waveguides.
The solid line is the theoretical Qd curve using the perrnittivities given

in Table I.

TABLE I
MEASURED RELATIVE PERMITTIVITIES AND Loss TANGENTS, Ka-BAND

Materiaf Estimates with Standard Error

<, 103 tan8

Teflon 2.0422 + 0.0006 0.217 + 0.006
Polypropylene 2.261 ~ 0.001 0.50 io.03
Polyethylene 2.302 + 0.003 0.38 * 0.02
Polystyrene 2.542 ~ 0.001 0.87 + 0.07
Rexolite 2.548 + 0.001 0.89 + 0.07

28 X 109 24 X 1091 I I

27 v. 10+ 123 x 10’

26 A 109 22 x 109

~ <
g

25 X 10q
9E

– 21X1O

>“ >“

24 X 109

VQ+
23 Y 10g– – 19 x 109

22 x Iogl 1 I I I
27 29 31

)18 x 109
33 35 37 39

FREOUENCY,GHz

Fig. 8. Comparison of measured and calculated group and phase veloci-

ties for a Teflon rod waveguide of diameter 0.635 cm. The solid lines
are calculated and the measurements are indicated by circles.

erated, and a can be determined from (26). In this investi-
gation the dielectric waveguides had a circular cross sec-

tion and the following procedure was utilized. Once the

guide wavelength and the waveguide dimensions were

known, C, was determined from (7). Assuming the value of

~, for Teflon in Table I, UPand Ug can be calculated from

(7), for a rod diameter of 0.635 cm. The comparison

between the calculated and measured values of Up and Ug

is shown in Fig. 8. The measured group velocity was

obtained by assuming a linear relation between adjacent

measured values on the a –/? curve. The attenuation

coefficient was calculated from (26) and tan i? was ob-

tained from (29). For the circular waveguide, the field
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Fig. 9. Derived values of c, and tan 8 from the measurements for
different dielectric materials.

configurations were known, and tan 8 was also calculated

from (14), giving the same results as (29).

The measured relative permittivities and loss tangents at

different resonant frequencies for the materials above are

shown in Fig. 9. The average values with the corresponding

standard deviations are given in Table I. A brief discus-

sion, including references, of alternate methods used to

determine the complex permittivities of materials at the

millimeter wavelengths has been given in [11] and [12]. The

corresponding attenuaticin coefficients for these dielectric

waveguides are shown in Fig. 10. In Fig. 11 are shown

plots of the half-power bandwidths at the different reso-

nances for two lengths of 0.635-cm-diameter Teflon wave-

guide. The plot indicates that the measured Q‘s are prim-

arily due to the dielectric losses. If the wall losses were

significant, the Q‘s of the shorter length waveguide would

have been noticeably lower at the lower frequencies and

the derived loss tangents in Fig. 9 would have been

noticeably higher. As a further check on the coupling

effects, the insertion losses of the resonator system with a

Teflon waveguide were measured at resonances near 27,

33, and 39 GHz. The measured insertion losses were – 71

dB, – 63 dB, and – 51 dB, respectively, at these three

frequencies.

It is clear that for low-loss performance in circular
dielectric waveguides, one should use small-diameter rods

made from matetial with small relative permittivit y and

loss tangent. At the Ka-band the attenuation in a dielectric

rod waveguide for small 2a \A ~ can be less than that of a

conventional rectangular metallic waveguide. Because the

surface resistivity of metals is proportional to the square

I I I
:0 POLYSTYRENE

I

.

●

● o POLYPROPYLENE
0

“8
● 0A POLYETHYLENE~A

k

i
10

Fig. 10. Measured attenuation coefficients for the different dielectric

waveguides corresponding to Fig. 8. Polystyrene and rexolite have
similar attenuation characteristics.

80

70 [

0 Ll__L-L~
26 28 30 32 34 36 38 40

f, GH2

Fig. 11. Plot of half-power transmission bandwidths at the different

resonances for two different lengths (6 in. and 8 in.) for circular Teflon
waveguides.

root of frequency, the losses of metallic waveguides in-

crease with frequency relative to that of a dielectric wave-

guide. This is shown in Fig. 12. The attenuation coeffi-

cients of different silver rec ~angular waveguides and of

circular Teflon waveguides at the indicated frequencies are

plotted in the figure. The assumption is that for the Teflon

rod, 2a/ A ~ = 0.4 at the indicated freqtiencies. Since the

attenuation coefficient of the dielectric waveguide can be
further reduced by using other than a circular cross sec-

tion, dielectrics show promise as viable guiding structures

at the millimeter and submillimeter wavelengths.

To summarize, a resonator method applicable at the

millimeter and submillimeter wavelengths which can accu-

rately measure the attenuation coefficient of ultra-low-loss
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(140-220) D
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o SILVERRECTANGULAR
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Fig. 12. Comparison of attenuation coefficients of silver rectangular

and Teflon circular wavegttides at the indicated frequencies. The wave-

guide range of the designated metal waveguides are shown m parenthe-

ses. For the dielectric waveguide, it is assumed that 2a /AO = 0.4 at the

indicated frequencies

dielectric waveguides has been described. In addition, the

complex permittivit y of the dielectric material of the wave-

guide can be derived. Since the fields are confined close to

the dielectric core, long resonators can be conveniently

implemented, permitting accurate measurements of a, c,,

and tan 8.
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